

Introduction

- Various systems out there
- Better than manual or different
- Experience of the Royal London PMU
- Pros and cons of electronic monitoring
- Considerations for operating an electronic system

Mobile Phone

- My mobile phone
 - It calls
 - It receives
 - It texts
 - It surfs very slowly
 - Plays music
 - It is an alarm clock and diary
 - It fits in my top pocket
 - The battery last 5 days

Smartphone

- It calls
- It receives
- It texts
- It surfs very fast
- Plays music
- Watch video
- Play network games
- It is an alarm clock and diary
- The battery last 1 day

Environmental Monitoring

- Manual processes
 - Particles
 - Temperature (room, fridges, freezers)
 - Pressure
 - Humidity
 - Air flow

Manual operations

Advantages

- Minimal data interpretation?
- Not dependent on electronic technology
- Easy to train and execute?
- Robust?

Disadvantages

- Deviation awareness is passive
- Reliance on individual readings
- Interpretation (magnehelic readings)
- Time of reading
- Calibration of equipment
- Variety of monitoring equipment and accredited staff

EMS

Various manufacturers provide systems that:

- Displays
- Records
- Monitors

Such parameters are normally room/ equipment environmental factors which are compared against measured values against fixed alarm limits

Capability of EMS

- Continuous readings
- Visual alarms and audible notifications (texting possible)
- Temperature, pressure, particles, anything that can produce an electrical signal.
- Unmanned..... but needs regular observation

URS

- Simple or complex depends on your needs and budget
- Number of rooms need monitoring
- What needs monitoring (temperature, pressure, humidity, particles, specialist requirements)
- Methods of recording, monitoring, reporting and Alarming
- Equipment integration (LFC, Isolators etc)
- Security and Contingency

Barts Health PMU and CPU

- Scale a bit different to most radiopharmacies but the principles are the same
- Operational since mid 2006
- Multiple Distinct areas
 - PMU
 - Non-sterile
 - Laminar Flow Cabinet Rooms
 - Negative Isolator room , Positive Isolator Room and Gassing Isolators Room
 - CPU
 - 5 rooms
 - 4 negative pressure isolators
- 30+ rooms being monitored across 2 sites
- Leading to over 200 data gathering points

Design Considerations

- Access (roof void, panels etc)
- Future proofing
- Lifecycles
- Future standards
- Additional Equipment
- Networked or localised
 - Wireless or wired can the signal get past shielding / walls
- Remote access (QA off site)

Costs

- Set up
 - Depends on size of unit and requirements
 - Which system
 - Could be in the region of £100K's

- Maintenance
 - Routine PPM (£10K's/year)
 - Repairs depend on nature of problem and robustness/ quality of original equipment

Hardware and Software

- A PC running enVigil comprising client and server applications, configured to provide a user interface and perform data acquisition, alarm functions and logging. UPS 30min data backup. Main PC in QA, View Mode entrance to PMU, Remote PC in CPU at Barts
- Particle counter units have associated control units and vacuum pumps
- Pressure sensors monitor absolute room pressure or differential pressure between isolators + their associated room
- Temperature sensors monitor temperature in rooms, fridges, freezers and incubators
- Common LFC alarms indicating an alarm has occurred in one of the units in the room but not the exact nature
 - Missed at handover

Installation

Hardware-

- cabling, probe positions, sensors, transducers (datascanner)
- Computers and associated printers
 - monitors/ remote screens
- Equipment/location identifier tags (fridges, freezers, isolators, laminar flow cabinets, rooms)

Software

- Each company has own program
- Antivirus
- Networking
- Operating system and upgrades

Validation and Setup

Validation

- FAT according toURS
- -SAT
- -IQ
- -0Q
- -PQ

Setup

- Parameter
- Alerts Limits
- Alert Delay
- UPS (30 mins)
- Backup
- Schematic labelling
- Reports

Security

- Wireless vs wired
- User access
- Administrator
- Network issues
 - Designated server, organisational server
 - viruses
- Data storage and recovery

System Maintenance

Routine

- Alarm acknowledgment
- Perform at least a daily check
- Routine interrogation when an alarm situation occurs + report significant excursions to QA/ Production management
- Comments entered where a cause can be attributed
- Historical report/ trending e.g.
 clinical trial fridge temperatures

Periodic

- PPM
- Annual calibration
- 6m system health check on main PC + View Mode PC
- 6m vacuum pump check
- 12m calibration of particle counters, temperature + pressure sensors
- 12m filter/vane change on vacuum pumps
- Lifecycles issues

Data generation and interpretation

Data trending

Data overload

"The greater our knowledge increases the more our ignorance unfolds."

President John F Kennedy

System Failure and Contingency

- We have information from a BMS but still need information for localised equipment
- What will you do
 - Back equipment
 - Temperature data loggers
 - Min/max thermometer
 - Manometers
 - Amemometer
 - Portable Particle Counter

Failures

- Surge from restart
- Lifecycle (component failure)
 - -? years
- Calibration failure/ delays
- Damage to equipment with abnormal practise
- Viruses
- Computer hardware failure

Quality Assurance and the QMS

Snap Shot details

- Green indicates no alarms
- Red indicates at least one alarm present
- Flashing indicates unacknowledged alarms
- Cyan indicates particle counters are off
- Magenta indicates physical error e.g. Datascan Solo failure
- Click to review a rooms or equipment parameters
- Recent alarm list is displayed
- System Health indicates state of the system, provides info on disk space, particle counter failures, vacuum pump failures and communication from Datascan solo devices

Common Issues

- Particle Counting
 - Pump failures
 - Cap left on
 - Can not be in operation due to alcohol damaging the sensors
- Power Interruptions
- Explaining excursions (clinical trials, calibration breaks etc)

Tweaking the system

- When to run particle counters
 - Timed control or operator start
- Pressure decay tests not possible when running particle counters
- Alcohol and hydrogen peroxide damages particle sensor
- Defrost cycles on fridges within limits and delays for alarms need risk assessment against product integrity

Conclusions

- Greater Degree of Quality Assurance
- Far more details of the integrity of your environment
- Remote access to data
- Alarming as an active and not passive process
- Requires more time resource and attention
- Increases costs

